Potential Drug-drug Analysis in Children Out-patients with Bronchopneumonia Medication Prescriptions

by Ilil Maidatuz Zulfa

Submission date: 12-Jun-2020 12:59PM (UTC+0700)

Submission ID: 1342389144

File name: Potential Drug-drug Analysis in Children Out-patients with Bronchopneumonia Medication

Prescriptions.docx (161.39K)

Word count: 1659 Character count: 9766 http://journal.umpalangkaraya.ac.id/index.php/bjop/article/view/1316 DOI: https://doi.org/10.33084/bjop.v3i2.1316

e-ISSN: 2621-4814

Potential Drug-drug Interactions Analysis in Children Out-patients with Bronchopneumonia Medication Prescriptions

Ilil Maidatuz Zulfa ¹ • • • • Fitria Dewi Yunitasari ¹

Susanty Kartika Dewi ²

¹Department of Community Pharmacy, Akademi Farmasi Surabaya, Surabaya, East Java, Indonesia

²Pharmacy Diploma Program, Akademi Farmasi Surabaya, Surabaya, East Java, Indonesia

*email: ililmaidatuz@gmail.com

Keywords:

Drug Interactions Bronchopneumonia Children Outpatients

Abstract

Drug-drug interactions (DDIs) is defined as the alteration of efficacy and toxicity of some drugs in the presence of other drugs. In the treatments of bronchopneumonia in outpatient settings, there is a lack of documentation of DDIs. This study was aimed to observe the potential DDIs on the prescriptions of children with bronchopneumonia. An observational and cross-sectional study was conducted on outpatient children with bronchopneumonia prescriptions during 2017. Potential for DDI was identified by online drug interaction checkers. The potential DDI then classified based on its severity (minor, moderate, and major) and mechanism (pharmacokinetic and pharmacodynamic). Among 86 prescriptions analyzed, potential DDIs observed at 48.84% of it. Of that, there were 67 potential DDIs where 72.34% of it were categorized as moderate. The majority of potential DDIs was pharmacodynamic interaction (76.12%) with the most frequently involved drug pair was Ephedrine-Salbutamol (29,85%). Children outpatients with bronchopneumonia are at risk of potential DDIs, especially to minor and moderate potential DDIs. Prescriptions screening for potential DDIs followed by monitoring of therapeutical effects and associated adverse drug events will optimize patient safety.

Received: March 20th 2020 Accepted: May 7th 2020 Published: May 19th 2020

© 2020 Ilil Maidatuz Zulfa, Fitria Dewi Yunitasari, Susanty Kartika Dewi. Published by Institute for Research and Community Services Universitas Muhammadiyah Palangkaraya. This is an Open Access article under the CC-BY-SA License (http://creativecommons.org/licenses/by-sa/4.0/). DOI:

INTRODUCTION

Drug-drug interactions (DDIs) is defined as the change of efficacy and toxicity of some drugs in the presence of other drugs (Shetty *et al.*, 2018). The alterations occure both in pharmacokinetics (absorbtion, distribution, metabolism, and excretion) and pharmacodynamics (sinergism, antagonism, and competition in receptors) phase (Kulkami *et al.*, 2013; Palleria *et al.*, 2013). In the clinical settings, DDIs is the main source of adverse drug event (Somogyi-Vegh *et al.*, 2019). A recent meta-analysis of several studies reports that DDIs has contributed to 1.1-5% of hospitalization and 0.25-25% of the adverse drug reaction related to hospitalization (Dechanont *et al.*, 2014; Ismail *et al.*, 2018). In outpatient

settings, there is a lack documentation of DDIs and its prevalence is reported lower than in hospitalized patients because they are usually prescribed less drug combination (Vaidhun & Sathish, 2011). However, if they are prescribed with polypharmacy the potential of DDIs occurrence will also rise.

Bronchopneumonia is one of life-threatning pneumonia manifestation commonly occur in children under 5 y.o. As the treatment of pneumonia, causative management using antibiotics and symptomatic drugs like antitusive, expecorant, antihistamine, analgesic-antipyretic used in bronchopneumonia management (Harris *et al.*, 2011; Chang *et al.*, 2014). Hence, high combination drugs potentially prescribed to the children with

bronchopnaumonia and its leading to the occurrence of DDIs. The DDIs identification in bronchopneumonia prescriptions will optimize the outcome therapy and prevent the incidence of adverse drug reactions (Noor et al., 2019). This study was aimed to observe the potential DDIs on the prescriptions of children with bronchopneumonia.

MATERIALS AND METHODS

An observational and cross-sectional study was conducted on outpatient children with bronchopneumonia prescriptions during 2017 at a Hospital in Bangkalan, Madura Island, Indonesia. Study began after obtaining permition from the hospital. The Inclusion criteria were prescriptions of outpatient children with age 0-14y.o. diagnosed infection bronchopneumonia without any comorbidities. Prescriptions contained one or two drugs with different route of administration were excluded. Potential for DDIs were identified by online drug interaction checkers from www.drugs.com. The drugs that not available in the database were than identified by www.drugbank.ca. The prescriptions contained drugs that not listed in that two online applications were also excluded. The potential DDIs then classified based on its severity (minor, moderate, and major) and mechanism (pharmacokinetic and pharmacodinamic). management suggestion from the online applications also included.

RESULTS AND DISCUSSION

During the period of study, a total of 158 prescriptions met the inklusions criteria. Of that, 72 prescriptions were excluded due to varoous reasons; 9 prescriptions only contained of one drugs, 3 prescriptions contained of two drugs with different route; 10 prescriptions consisted of probiotics; and 50 remaining contained of herbal

medicine like succus liquiritae and echinaceae extract that not available in the two online-application used. The remaining 86 prescriptions were analyzed for the potential DDIs. The prevalence of potential DDIs based on gender, age, and number of drug prescribed showed in patients characteistics as presented in Table I.

Table I. Patients characteristics

	N (%)		
Characteristics	Potential	No Potential	Total (%)
	DDIs	DDIS	
Gender			
Female	19 (22.09)	24 (27.91)	43 (50.00)
Male	23 (26.74)	20 (23.26)	43 (50.00)
Total	42 (48.84)	44 (51.16)	86 (100.00)
Age (years)			
<1	13 (15.12)	2 (2.33)	15 (17.44)
1-5	21 (24.42)	35 (40.70)	56 (65.12)
6-10	5 (5.81)	7 (8.14)	12 (13.95)
11-14	3 (3.49)	0 (0.00)	3 (3.49)
Total	42 (48.84)	44 (51.16)	86 (100.00)
Number of drug			
prescribed			
· <5	30 (34.88)	10 (11.63)	40 (46.51)
5-10	7 (8.14)	21 (24.42)	28 (32.56)
>10	5 (5.81)	13 (15.12)	18 (20.93)
Total	42 (48.84)	44 (51.16)	86 (100.00)

Generally, the prevalence of potential DDIs is linear to the number of drug prescribed as Loya *et al.* (2009) reported that 46.2% dan 72.3% of polypharmacy had at least one potential DDIs. However, in this study the majority potential DDIs observed in the prescriptions contained less than five drugs. This discrepancy might be due to the prescribing culture and formulary used in the hospital. Out of the 42 potential DDIs found, most of them had moderate (80.95%) and minor (73.80%) severity that is sufficiently to warn us to have a monitoring for the potential dangerous, as shown in **Figure 1**.

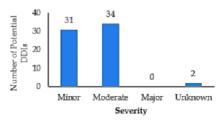


Figure 1. Severity of Potential DDIs

The prevalence of potential DDIs, its manifestations, and suggested management predominantly occur in the pharmacodynamic phase, as presented in Table II. The higher number of pharmacodynamics DDIs are probably due to the drug combinations prescribed is purposed to enhance the efficacy (Patel et al, 2014). The pair of ephedrine+salbutamol was counted 29.85% of pharmacodynamics DDIs and potentially harm to patients as it has moderate severity. The manifestation is similar to pseudoephedrine+salbutamol which was observed 4.48% of pharmacodynamics DDIs in this study. The administration of beta-2 agonists together with other adrenergic agents may result in the increase of cardiovascular side effects including escalation of pulse rate and systolic or diastolic blood pressure as well as ECG changes such as flattening of the T wave, prolongation of the QTc interval, and ST segment depression. These effects may be more common when the drugs are administered systemically or when recommended dosages are exceeded (Khalilian et al., 2016). A meta-analysis by Salpeter et al. (2004) reported that beta-2 agonist use in patients with obstructive airway disease increases the risk for cardiovascular adverse events from three days to one year. The manifestation occure were an increase in heart rate and potassium concentrations depletion. Therefore, the oral concomitant use of ephedrine+salbutamol in children with bronchopneumonia must be counted for its benefit and risk. Use salbutamol in local route like inhaler will minimize the risk of cardiovascular event.

Another pharmacodynamic DDIs that need to be considered was from the pair of dexamethasone+teophyline. The co-administration of theophylline and corticosteroids theoretically may potentiate the risk of hypokalemia due to additive potassium-lowering effects. Theophylline inhibits adenosine receptors and blocks phosphodiesterase

causing rised cyclic adenosine monophosphate resulting in increased levels of adrenergic activation and catecholamine release at larger dose (Barnes, 2010). Elevated catecholamine concentrations will lead to adverse effects such as metabolic acidosis. hyperglycemia, cardiac arrhythmias, and hypokalemia (Kardalas et al., 2018). Additionally, corticosteroids conduce sodium retention through the increase of sodium tubular absorption and potassium excretion. Sodium retention and potassium loss may result in hypokalemic alkalosis in patients glucocorticoids (Nasralla et al., 2010). Consequently, if the benefits outweight the drawbacks, the use of dexamethasone and theophylline in children with bronchopneumonia should be followed by monitoring in potassium levels and the cardiovascular events (Zec et al., 2016).

In the pharmacokinetics phase, the most common DDIs observed was ephedrine+vitamin C. Acidic urine increases the urinal elimination of ephedrine. However, the severity is minor and the clinical significance is unknown.

Table II. Prevalence of potential DDIs

Drug pairs	N (%)/	Potential	Management			
Drug pairs	severity	Manifestasion	Management			
Pharmacokinetics DDIs						
Ephedrine-Vitamin	9 (13.43)	The effect of	Considering for			
C	/ Minor	ephedrine may be	drug			
		decreased	subtitution			
Phenytoin-	2 (2.99) /	The effect of	Considering for			
Dexamethasone	Moderate	dexamethasone	drug			
		may be decreased	subtitution			
Phenytoin-	2 (2.99) /	The potential	Monitoring on			
Paracetamol	Moderate	hepatotoxicity of	liverfunction			
		paracetamol may be				
		increased and its				
		pharmacological				
		effects may be				
		decreased				
Total		13 (19.40)				
Pharmacodynamics DDIs						
Chlorphenyramine-	1 (1.49) /	The effect on	Monitoring of			
Domperidone	Unknown	cardiovascular may	the presence of			
		be increased	arrhythmia			
Chlorphenyramine-	1 (1.49) /	The effect on CNS	Monitoring on			
Codein	Moderate	may be increased	respiration			
			function			
Dexamethasone +	9 (13.43)	The effect on	Monitoring of			
Salbutamol	/ Minor	cardiovascular may	the presence of			
		be increased	arrhythmia			
Dexamethasone +	4 (5.97) /	The effect on	Monitoring			

Teophyline	Moderate	cardiovascular may	for altered		
		be increased	efficacy and		
			safety of		
			theophylline		
			and altered		
			serum		
			potassium		
Ephedrine +	20 (29.85) /	The effect on	Monitoring for		
Salbutamol	Moderate	cardiovascular may	blood pressure		
		be increased	and heart rate		
Ephedrine -	1 (1.49) /	The potential side	Monitoring of		
Teophylin	Minor	effects like nausea,	the presence of		
		vommiting,	side effects		
		tachycardia and			
		insomnia may be			
Mathulanadaiacles	0./12.42\	increased The by molyalamia	Monitorinof		
Methylprednisolon + Salbutamol	9 (13.43)	The hypokalemia	Monitoring for		
+ Salbutanioi	/ Minor	risk and the effect	serum		
		on cardiovascular	potassium level and the		
		may be increased			
			presence of arrhythmia		
Prednison-	1 (1.49) /	The hypokalemia	Monitoring for		
Salbutamol	Minor	risk and the effect	serum		
Salbutamoi	MIIIOI	on cardiovascular	potassium level		
		may be increased	and the		
		may be increased	presence of		
			arrhythmia		
Pseudoephedrine-	3 (4.48) /	The effect on	Monitoring for		
Salbutamol	Moderate	cardiovascular may	blood pressure		
		be increased	and heart rate		
Salbutamol-	1 (1.49) /	The hypokalemia	Monitoring for		
Teophyline	Moderate	risk and the effect	serum		
Fy		on cardiovascular	potassium level		
		may be increased	and the		
		•	presence of		
			arrhythmia		
Cetirizin-Sodium	1 (1.49) /	The effect on CNS	Monitoring for		
Valproate	Moderate	may be increased	cognitif		
			function		
Total		53 (76.12)			
Unknown mechanism DDIs					
Dexamethasone-	2 (2,99) /	The effect of	Considering for		
Ephedrine	Minor	dexamethasone	drug		
		may be decreased	subtitution		
Domperidone-	1 (1,49) /	The serum level of	Considering for		
Paracetamol	Unknown	domperidone may	drug		
		be increased	subtitution		
Total		3 (4.48)			
Total		67 (100.00)			

Apart from the result above, this study has several limitations. As this study showed the potential for DDIs in the prescriptions, the actual occurr of DDIs in the patients could not be determined because the study was a single point cross-sectional and out-patient based. Moreover, herbal medicine and probiotics-contained prescriptions could not be determined for the DDIs. Therefore, future studies on potential and actual occurrence DDIs in outpatient children with bronchopneumonia in future still need to be conducted.

CONCLUSION

A considerable prevalence of potential DDIs has been observed in children outpatients with bronchopneumonia (48.84%) where moderate potential DDIs were the most common. Moreover, the use of probiotics and herbal medicine in bronchopneumonia treatments still need to be considered related unknown potential DDIs. Prescriptions screening for potential DDIs followed by monitoring of therapeutical effects and associated adverse drug events will optimize patient safety.

ACKNOWLEDGMENT

We would like to express our deep sense of gratitude to the Hospital for their permition and support during data collection. We would also thank to Akademi Farmasi Surabaya for the financial support during this study.

Cek Plagiasi - ilil maidatuz zulfa

ORIGINALITY REPORT

2%

0%

0%

2%

SIMILARITY INDEX

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

Submitted to TechKnowledge

Student Paper

2%

Exclude quotes

On

Exclude matches

< 2%

Exclude bibliography

On